15 research outputs found

    How fast do radial basis function interpolants of analytic functions converge?

    Get PDF
    The question in the title is answered using tools of potential theory. Convergence and divergence rates of interpolants of analytic functions on the unit interval are analyzed. The starting point is a complex variable contour integral formula for the remainder in RBF interpolation. We study a generalized Runge phenomenon and explore how the location of centers and affects convergence. Special attention is given to Gaussian and inverse quadratic radial functions, but some of the results can be extended to other smooth basis functions. Among other things, we prove that, under mild conditions, inverse quadratic RBF interpolants of functions that are analytic inside the strip ∣Im(z)∣<(1/2ϵ)|Im(z)| < (1/2\epsilon), where ϵ\epsilon is the shape parameter, converge exponentially

    Using global interpolation to evaluate the Biot-Savart integral for deformable elliptical Gaussian vortex elements

    Get PDF
    This paper introduces a new method for approximating the Biot-Savart integral for elliptical Gaussian functions using high-order interpolation and compares it to an existing method based on small aspect ratio asymptotics. The new evaluation technique uses polynomials to approximate the kernel corresponding to the integral representation of the streamfunction. We determine the polynomial coefficients by interpolating precomputed values from look-up tables over a wide range of aspect ratios. When implemented in a full nonlinear vortex method, we find that the new technique is almost three times faster and unlike the asymptotic method, provides uniform accuracy over the full range of aspect ratios. As a proof-of-concept for large scale computations, we use the new technique to calculate inviscid axisymmetrization and filamentation of a two-dimensional elliptical fluid vortex. We compare our results with those from a pseudo-spectral computation and from electron vortex experiments, and find good agreement between the three approaches

    Piecewise smooth chebfuns

    Get PDF
    Algorithms are described that make it possible to manipulate piecewise-smooth functions on real intervals numerically with close to machine precision. Breakpoints are introduced in some such calculations at points determined by numerical rootfinding, and in others by recursive subdivision or automatic edge detection. Functions are represented on each smooth subinterval by Chebyshev series or interpolants. The algorithms are implemented in object-oriented MATLAB in an extension of the chebfun system, which was previously limited to smooth functions on [-1, 1]

    Node Generation for RBF-FD Methods by QR Factorization

    Get PDF
    Polyharmonic spline (PHS) radial basis functions (RBFs) have been used in conjunction with polynomials to create RBF finite-difference (RBF-FD) methods. In 2D, these methods are usually implemented with Cartesian nodes, hexagonal nodes, or most commonly, quasi-uniformly distributed nodes generated through fast algorithms. We explore novel strategies for computing the placement of sampling points for RBF-FD methods in both 1D and 2D while investigating the benefits of using these points. The optimality of sampling points is determined by a novel piecewise-defined Lebesgue constant. Points are then sampled by modifying a simple, robust, column-pivoting QR algorithm previously implemented to find sets of near-optimal sampling points for polynomial approximation. Using the newly computed sampling points for these methods preserves accuracy while reducing computational costs by mitigating stencil size restrictions for RBF-FD methods. The novel algorithm can also be used to select boundary points to be used in conjunction with fast algorithms that provide quasi-uniformly distributed nodes

    Computing eigenmodes of elliptic operators using radial basis functions

    Get PDF
    Radial basis function (RBF) approximations have been successfully used to solve boundary-value problems numerically. We show that RBFs can also be used to compute eigenmodes of elliptic operators. Particular attention is given to the Laplacian operator in two dimensions, including techniques to avoid degradation of the solution near the boundaries. For regions with corner singularities, special functions must be added to the basis to maintain good convergence. Numerical results compare favorably to basic finite element methods

    IMPOSSIBILITY OF APPROXIMATING ANALYTIC FUNCTIONS FROM EQUISPACED SAMPLES

    No full text
    Abstract. It is shown that no stable procedure for approximating functions from equally spaced samples can converge geometrically for analytic functions. The proof combines a Bernstein inequality of 1912 with an estimate due to Coppersmith and Rivlin in 1992
    corecore